The future of HLH treatment: translating fundamental insights into clinical realities

Michael B. Jordan and Colleagues
Cincinnati Children’s Hospital Medical Center
Univ. of Cincinnati
How do we improve the outcomes for children with HLH?

What are the problems?

1. The disease is rare and the diagnosis is problematic
 > Raise awareness (we can all help with this)
 > Improve diagnostic criteria (based on new understanding)

2. There is ample ‘room for improvement’ of initial therapies
 > The disease is poorly understood
 >> Make a laboratory model and use it to:
 Understand how HLH develops
 Understand how current therapy works (drugs, BMT)
 Find new therapies
 >>>> Test new therapeutic discoveries in patients
 Conduct clinical trials

3. There is ample room for improvement of BMT for patients with HLH
 > Try new approaches in transplantation
 > Use laboratory models to develop alternatives (gene therapy)
Diagnostic Criteria (per HLH2004 study):
Genetic mutation(s) associated with HLH, or at least 5 of 8:
1. Fever
2. Splenomegaly
3. Cytopenias (affecting at least 2 cell lineages)
4. Hypertriglyceridemia or hypofibrinogenemia
5. Elevated ferritin (>500 ng/ml)
6. Elevated sCD25 (sIL2r)
7. Low or absent NK cell function
8. Hemophagocytosis evident on biopsy (in bone marrow, spleen, liver, or lymph node)
A pathophysiologic view of HLH patterns

(what does our increasing understanding of HLH tell us about how we may recognize it in the future?)

<table>
<thead>
<tr>
<th>Category 1: Predisposing Immunodeficiency</th>
<th>Category 2: Significant Immune Activation</th>
<th>Category 3: Abnormal Immunopathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low or absent NK cell function</td>
<td>Fever</td>
<td>Cytopenias</td>
</tr>
<tr>
<td>Genetic defect of cytotoxicity</td>
<td>Splenomegaly/Hepatomegaly</td>
<td>Decreased fibrinogen or increased triglycerides</td>
</tr>
<tr>
<td>Family history of HLH</td>
<td>Elevated Ferritin (>3000 ng/ml)</td>
<td>Hemophagocytosis</td>
</tr>
<tr>
<td>Prior episode(s) of HLH or unexplained cytopenias</td>
<td>Elevated sCD25</td>
<td>Hepatitis</td>
</tr>
<tr>
<td>Markers of impaired cytotoxicity: Decreased expression of perforin, SAP, XIAP, or mobilization of CD107a</td>
<td>Elevated sCD163<sup>93</sup></td>
<td>CNS involvement</td>
</tr>
</tbody>
</table>

(The HLH-2004 diagnostic criteria are listed in bold.)

How do we understand what is going on in patients with HLH?
Mouse Model of HLH:

Infect with LCMV

prf1-/-

Prolonged fever/excessive splenomegaly
Pancytopenia
Hypofibrinogenemia/hypertriglyceridemia
Elevated sIL2R, ferritin
Hemophagocytosis
Absent NK function
Hypercytokinemia
Tissue infiltration with MΦ’s/ T cells
Fatal immunopathology in liver, CNS, etc.

Jordan et al, Blood, 2004
Figure 1. LCMV-infected pfp-/− mice display clinical and laboratory features of HLH
Figure 4. Both CD8+ T cells and IFNγ are necessary for the development of an HLH-like disorder in LCMV-infected pfp-/- mice

3 steps to HLH...

Normal individual:

Pathogens

(+) → Dendritic cells

(+) → (CD8⁺) T cells

(−) → Cytokines

→ Cytotoxic killing

→ ‘Immunity’

HLH-prone individual:

Pathogens

(+) → Dendritic cells

(+++) → (CD8⁺) T cells

‘HyperImmunity’

(+++) → IFN-γ

→ Macrophages

→ HLH
Rational Targets for treating HLH

Treat infection

\[\xrightarrow{(+)} \] Dendritic cells/ APC’s

\[\xrightarrow{ (+++)} \] ATG/ CAMPATH

\[\xrightarrow{ (+++)} \] Etoposide

\[\xrightarrow{ (+++)} \] ‘HyperImmunity’

\[\xrightarrow{ (+++)} \] IFN-\(\gamma \)

\[\xrightarrow{ \text{Targets for future therapies} } \]

\[\xrightarrow{ \text{Macrophages} } \]

\[\xrightarrow{ \text{HLH} } \]

Ongoing research efforts:
1. Can we combine ATG and etoposide for better effects? (the HIT-HLH trial)
2. Can we develop therapies (using the mouse model) to specifically target the dendritic cells and T cells which are driving HLH?
Hybrid ImmunoTherapy for Hemophagocytic LymphoHistiocytosis

WWW.ClinicalTrials.gov Identifier: NCT01104025
HIT-HLH

• Trial incorporates initial ATG, followed by weekly etoposide. After the first week, dexamethasone dosing is similar to HLH94/2004
• Rationale: Clinical and biologic studies suggest that a useful synergy between ATG and Etoposide may be observed
• Eligible patients: have active HLH and have not been treated in recent months with etoposide (some steroids OK)
• Trial is open for enrollment in Cincinnati and at 10 other collaborating centers in the US and Canada
• Primary outcomes:
 – Survival and complete response rates at 8 weeks
• Secondary outcomes:
 – Survival and response rates until time of HCT, or up to six months after enrollment (if no HCT)
 – Define response/relapse kinetics
Newer strategies for BMT are associated with higher survival in patients with HLH

Kaplan-Meier 3-year survival curves for the MAC and RIC groups.

GENE THERAPY FOR HEMOPHAGOCYTIC LYMPHOHISTIOCYTOSIS (HLH)

FIXING A CRITICAL ‘CIRCUIT BREAKER’ IN THE IMMUNE SYSTEM

Marlene Carmo, Paritha Arumugam, Swati Tiwari, Catherine Terrell, Supriya Pokkali, Chris Baum, Adrian Thrasher, Kimberly Risma, Punam Malik, Bobby Gaspar, and Michael Jordan

Divisions of Immunobiology and Bone Marrow Transplantation and Immune Deficiency
Cincinnati Children’s Hospital/ U. of Cincinnati
Perforin deficiency appears highly suitable for gene therapy

• Monogenic disorder
 – All disease-associated mutations are ‘loss of function’ (No ‘dominant negatives’)

• Correction in only a small portion of cells is sufficient for disease protection

• Current therapies carry significant risks
Gene therapy for murine HLH

Marrow LSK’s

prf-/-

Transduce with prf1 lentivirus

prf-/-

16 weeks

IFN-γ Cytopenias etc.

LCMV
Acknowledgements

Jordan Lab
Catherine Terrell
Scott Millen

Prior members:
Supriya Pokkali
Erin Zoller
Ted Johnson
Rob Thacker

Collaborators:

Gene therapy project:
Punam Malik
Kim Risma
Bobby Gaspar (UCL/London)

Novel therapeutics:
Dave Hildeman
Jonathan Katz

HIT-HLH trial:
Lisa Filipovich
The HIT-HLH Network (10+ PI’s)

CCHMC clinical care/research:
Lisa Filipovich
Rebecca Marsh
Other colleagues

Funding:
NIH/NHLBI
The Histiocytosis Association
Liam’s Lighthouse Foundation

The Center for Immunologic Research